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WITH AFTEREFFECT* 

Some problems of control and observation /l-3/of linear dynamic systems 
with aftereffect, defined by differential and integral equations with 
deviating arguments are considered. The theory of duality fortheproblem 
of minimizing the Boltz convex functional on the trajectories of a func- 
tionally differentiable system of the neutral type with a lag in the control, 
state, and velocity variables is developed. New concepts of controll- 
ability are introduced into the system with aftereffects and phase 
constraints, as well as dual concepts of ideal observability of their 
conjugate system of integral equations with a lead in conditions of 
incomplete information. The observability concepts introduced here are 
connected with the restitution of the 
system containing minimum information 
calculated uniquely. The schemes and 
used in differential-game problems of 
/4-6/. 

1. The problem of optimal control. 

generalized final state of the 
to enable the future motion to be 
results obtained enable them to be 
dynamic systems with aftereffects 

Consider a linear control system whose dynamics 
along the segment [t,,t,l is defined by differential equations with a deflecting argument of 
the neutral type 

z‘ (1) = A (t) .z (t) + Al (t) t (t - h) + A, (t) 2’ (t - 4 + B (t) IJ (4 + B, (4 ZJ (t - h) *(I.*) 

where h> 0 is the lag of the control, state and velocity variables. 
Systems with an aftereffect of the type (1.1) occur in problems of mechanics, automatic 

control, economics, etc. (see the numerous examples in /7/). It is important to allow for 
the action of the aftereffect when defining real dynamic systems and related control and 
observation processes. 

Let us consider the problem of minimizing the Boltz functional 

1(2,~)=a,(t(t~),5(t~)) +i F(s(l),rc(t),t)dt+inf (1.2) 
1. 

*Prikl.Matem.Mekhan.,48,4,622-631,1984 
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on a set of absolutely continuous trajectories x: ]to,tl]+ R” and summable controls u: [&,,&I + 
R” that satisfy system (1.1) with initial conditions and constraints 

3 (i) = cp (% to - h < t < t,; JA (C) = 01 (a t, - h -< t < &l (1.31 

(a: (t,), m (Q) E D c fin; u (2) E U (t) c R", to < t < t, (1.4) 

Henceforth we will assume that the following conditions, imposed on parameters of problem 
(1.1)-(1.41, are satisfied: 

a) the function 0: P +(--0o,c0] is convex and semicontinuous from below, and 

dom d? fk! {(to, zl) FE R? Q, (zo,. ZJ < co} = D 

b) the function F(s,u, t) is convex relative to (z, u), measurable &d essentially bounded 
with respect to t, and dom F (a, -, t) = R” X R”’ for almost all t E it,, d,]; 

c) the multivalued mapping u: ]f($, t,] --t 2Rrn is measurable /3, 8/ and takes closed convex 
values, and the function d (t) = inf (1 u 1 : u E U (t)) is essentially bounded along ]t,,t,]; 

d) the components of the (n X @-matrices A (&A,(t) are summable, while the components 
of the (n X n)-matrix A*(t) and of the (n X m)-matrices B(t) and B,(t) are measurable and 
are essentially bounded along [tO,ll]; 

e) the vector function 'p: It, - h, toI + R” is absolutely continuous, and the vector func- 
tion 'pr: [t, - h, to] + R” is summable: 

f) the following regularity conditions of the Slater type are satisfied: a process 12 (% 
n V)), to < t < t, exists that is admissible in (l.l)-(1.4) and satisfies the inclusions 

(z (lo), 5 (M) E ri D; u(t) E ri U (11, t, < t < t1 (1.5) 

where ri_Y denotes the relative interior of the set X /9/. If the set 

epi dJ E {(x0, q, p) E FP+l: p > O (x0, q), (zO, x1) E D} 

is polyhedral /9/, the first inclusion in (1.5) may be weakened to (CC{&,), s(Q) ED. IJote that 
condition f) is satisfied a fortiori, if the right-hand end of t(3,) is free of constraints. 

Henceforth everywhere the prime denotes transposition, 1 l 1 is the norm in a finite 
dimensional space, and &(* 1 X) is the indicator function, of the set X. 

2. The dual problem and the conditions of optimality. \Je consider the con- 
jugate functions /9/ 

0' ($0, $1) = sup (xo'$po + m,'% - @ @o,q): (20, ~1) E R2”} 
F+ (u, Y! t) = sup {u'y + x'w - F (t, IL,. t): u z U (t), z 5 R”} 

and we construct the problem dual to (l-l)- (1.4) of minimizing the functional 

:.+h 

J(%w)= 1 ~'(t)[A,(t)~(t--)+Az(t)~p'(t--)+ 
t. 

(2.4) 

on the set of sununable controls W: [to, t,] + RR and essentially bounded trajectories 9: [to,l,]- 
R” of the integral system with the lead 

(2.2) 

Note that by virtue of (2.2),thefunction $ U) -AZ' (t + h)q((t + h) is absolutely contin- 
uous on It,, tIl, and the condition of finiteness of the functional (2.1) results in contraints 
expressed in terms of effective sets of conjugate functions O*r Fob /9/ 

W (to) - 4' (41 + 4 9 VO + 4, - 9 W) E dam a* (2.3) 

w (1) E d-F,* (-. ~3’ (0 IP (0 + B,’ (t + h) a (t + JO, 0, to < t Q t, (2.4) 

System (2.2) represents the totality of integral equations of the Volterra type of the 
second kind witha leading argument. If the matrix A,(t) is absolutely continuous on [t,,t,J, 
then by virtue of (2.2) we obtain that the trajectory q(t) is piecewise continuous on [t,,,tJ, 
the points of discontinuity are of the form 91 = 1, -ih, i = 1,2,..., and 9((t) is absolutely 
continuous over every interval of continuity. Differentiating (2.2), we obtain in this case 
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the equivalent system of functionally differential equations with a lead of neutral type 

9' 0) = --A' (1) * 0) - 8,' (t T h) 9 (1 + h) +- dldt [A,' (t .+ ( 2.5) 

h) Ib (t -+ h)l + w (Q 
f* < t < t*; * (t) = 0. t, < t < t, 'r h 

with the conditionsoftrajectory jumps 

$(.Ci-O)-$(Ti + O)=A*‘(Ti + ii)[$(Ti f IV-00)~$(?i - jr 7 (2.6) 
i 

o)]~[nA,‘(tlt(Is-f)A]ztt(tl), t*=ti-iii?, i--1,2,... 
k=1 

from which it follows that the trajectory zp(t),i$ <;t .$tl does not have jumps, if either 
A* (G) = 0, or the boundary condition (2.3) implies II, (tl) = 0. 

Note that the control set in (2.4) does not depend on the state variables of system (2.2) 
i.e. problem (2.1)-(2.4) has no phase constraints, if F (I, u, t) = Ff, (r, t) + F, (u, t) and the 
function Fs(u, t)f &(ulU (t)) is cofinite with u /9/ for almost all t~[tortl]. This occurs if 
the given function satisfies the condition of growth of the IJagumo-Tonelli type as l~l-+=J 
/S/, in particular, when the set U(t) is uniformly bounded, or Fa(.,t) increases at infinity 
more rapidly than ]u 1. 

The following result establishes the duality relation between the extremal values of the 
func$ionals in problems (1.1)-(1.4) and (2.1)-(2.4) and the necessary and sufficient condi- 
tions related to it. In the relations defined below d~((x,,s,) denotes the subdifferential of 
the function @ (*;.)/9/ in the sense of convex analysis at the point (r,,r& and a,F(x,u,t) 
denotes the subdifferential of the function F with respect to the first argument. Note that 
the subdifferential multivalued mappings take convex closed values and, in the case of smooth 
convex functions, reduce to conventional derivatives. 

Theorem 2.1. When assumptions al-f) hold in problem (2.1)-(2.41, a solution exists and 
the extremal reiation of duality 

inf I@, u) = - min J (9, m) < 00 (2.7) 

holds. In this problem inf and min are taken over all admissible processes in problems 
(l.l)-(1.4) and (2.1)-(2.41, respectively. For the process (z" (t), 16" (t)}, to < t < tl, to be 
optimal it is necessary for problem (l.l)-(1.4), and for almost all Ffs, u, t) = F,(s,t)+ F, 

(f4 t) it is also sufficient, that almost ali tE[t,,t,] the following conditions be satis- 
fied: 

I(@" (t))' B (t) + ($" (t + h))' B, (t -+ h)l u0 (t) - 
F (2" (Q, u" (0, t) = SUP {I($' (t))' B (t) f 
($= (t + h))’ B1 (t f h)l u - F (z’ (t), u, t): u E U (t)) 

w” (t) E c&F (z” (t), 22 (t), t) 
14 (to) - -4’ (to + W 9“ (to + 4, +“ (td) E 8@ W’ (to), 2 (td) 

(2.8) 

(2.9) 
(2.10) 

where (9' (t), w" (t)}. to < t < tl is the optimal process in the dual problem 12.11-(2.4). 

Proof. In conformity with the scheme * we reduce the initial problem of optimal control 
(l.l)-(1.4) for the system with aftereffect to that of minimizing the Boltz convex functional 
on trajectoriesofa linear system of ordinary differential equations. 

Let N be a positive integer such that 

(N- l)fL<& - t* ,<ivh 
Let us consider the vector functions p(f) and v(t) of dimensions Nn and Nm, respect- 

ively, on the segment lO,M 

p (t) = 031 (Q, . . ., PN (t)h pf tt) = 3: h +‘t + ti - 1) h, (2.11) 

V ft) = (VI (t), . . -, VN (t)), vi (1) = u (to + t + (i - 4) h), i = 1, . . _, N 

It can be shown that (1.1) is equivalent to the following set of ordinary differential 
equations in functions (2.11): 

K (t) = t&l (t))+ L (1) = &J (t)h hf (t) = @fff @))t 1 -< 

4 i<N 

*Mordukhovich, 3. Sh. and Sasonkin, A.M., Duality in problems of optimal control of neutral- 
type systems with application to controllability and observability. I. Minsk, Deposited at 
VINITI, No. 5266, 1980 
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A(to+t+(i-l)h), j=i, i=l,..., 14 

Kij(t)= A,(t,+t+(i-l)h), j=i-I, i=Z,...,N 

for all other i,i 
B(t,+t+(i-I)h), j=i, i=l,...,fi 

Lij(t)= Bl(t,+t+(i--I)h), j=t-i, i=Z,...,N 

forallother i,i 
nr j=i, 2=1,...,% 

Mij(t)= -AZ(to+t+(i-l)h), j=i--1, i=2,...,N 

for all other i,j 

and g (Q= (f (C 0, . . .I 
t-h), 

O),f(t)= AI (to + t) cP(t,+ t - h) + B, (t,+ t) ‘P, (to+ t - h) + Al (to + t) cp’ (to + 
where E,, is a unit matrix of dimensions n x n.. 

The Boltz functional (1.2) and the constraints (1.4) take the form 

0 (Pi(O), PN(h)) + 1 2 FtPitt)* vi(t), to + t-f- (i- l)jJ)dt-tinf (2.13) 
0 kl 

@I (oh PN (h)) ED, pi (h) = ~i+~(o), i = 1, . . ., N - 1 (2.14) 
Y (t) E u (to + t) x u (t, + t + h) x . . . X U (to + t + (N - 1) h), 0 Q t Q h 

We apply to the problem of optimal control (2.12)-(2.14) the results obtained in /lo/. 
These are, in turn, based on the reduction to the Boltz generalized variational problem /0/and 
on the use of the theory of duality for problems of convex programming in functional space. 
Using the specific properties of problem (2.12)- (2.14) and passing from the hybrid system with 
a lead, conjugate to (2.12), (l.l), to the integral form (2.2), we obtain theduality problem 
of optimization in the form (2.1)- (2.4) and the extremal duality relation (2.7) from which, 
following the scheme usually applied to convex problems, we derive the necessary and suffi- 
cientconditions (2.8)-(2.10). The theorem is proved. 

Remarks. 2.1. Relations (2.8)-(2.10) are sufficient for 12' (:), Y' (t)), t, < t < t, to be 
optimal in problem (l.l)- (1.4) without the condition of regularity f). 

2.2. The conditions of optimality (2.8)- (2.10) are an analogueof the Kuehn-Thakker theorem 
of convex programming /9/ for the class considered here of linearly convex problems of optimiz- 
ing systems with aftereffect. When the functions F,UJ are smooth, the version of Pontryagin's 
principle of the maximum /ll/ (in standard form) is strengthened, and the conjugate trajectory 
is the solution of the dual optimization problem. Krasovskii /l/ was the first to establish 
the results of this type for the special class of linearly convex problems of optimal control, 
and later developed in /l-4, 8, 10, 12/ and elsewhere for problems of control of ordinary 
dynamic systems and for systems with a lag. 

2.3. By analogy with /8/ for ordinary systems the conditions of optimality obtained may 
be formulated in Lagrangian and Hamiltonian forms equivalent to (2.8)-(2.10) and, also, in 
the form of the theorem on the saddle point /l, 3, 4/ using the formalism of the theory of 
games. Note that for the special class of functions F,@ the duality problem (2.1)-(2.4) 
can be interpreted in the form of the problem of optimal observation from the type of construc- 
tion /l, 3, 13, 14/. 

3. Controllability and observability. Using the theory of duality of extremal 
convex problems and the results obtained above, we shall consider some concepts of the control- 
lability of linear systems with aftereffects of the type (1.1) and (2.2). We shall cnsider 
the control system (1.1) on the segment Ito, t,l with the initial conditions 

3 (t) = cp (t), u (t) 3 0, to - h Q t g to (3.1) 

where cp: [to - h, toI --t f?” is an absolutely constinuous vector function. We assume the vector 
functions u(.)~L,([t,,&], Rm) to be admissible controls in (1.1) and, also, that the para- 
meters of system (1.1) satisfy condition d). 

Let C(t) be a (k X a)-matrix and Dtt) be a (k X m)-matrix with elements that are measurable 
and essentially constrained on [t,,t,j We introduce the constraints 

a,, y (4 2f C (t) .r (4 + D (t) u (t) 3 0, to < t < tl (3.2) 

on the admissible processes of system (l.l), (3.1) pertaining to constraints of mixed type 
on the phase coordinates and control. 

We denote by z;(m) the set {z(t); s(t + e), -4 Q 0 CO}, which we shall call the state of 
system (1.1) at the instant of time t. Let Q be an arbitrary Banach space with the norm 11. [IQ 
containing the final state z,,(a) of system (l.l), and P be the Banach space with the norm 
11 -tip that contains the functions a,,.(.) of the form (3.2) generated by processes {z(f), v(t)), 

to <t < t, admissible in (1.1). 
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Definition 3.1. System (1.11, (3.1) 1s called '&approximately null-controllable ~;n tne 
segment Ito, t,l, when the constraints (3.21 are P approximations, it for any initial state 
zt,(.) over any a> 0 there is a control u(*)E L,([i,, t,], Em) and, by vrrtue of cl.11 , ,3.1, , 
a trajectory s(t), t, <t< t, corresponding to it such that 

11+,i.)lln+ il%u(.)llP<s 

Remarks. 3.1. If II+,(.)&,,= [z(t,)( and there are no constraints (3.2), the approximate 
null-control of system (1.1), (3.1) is identical with the exact controllability to null when 
t== t,. However, in the general infinite - dimensional case the concepts of approximate and 
exact (or complete in the meaning of /15/I null controllability are not equivalent in the 
class of admissible controls consdidered here. 

3.2. The vector function a,,.(t) in (3.2) may be considered as the output of system (1.1) 
/3, lo/, and we can interpret the concept of controllability as the approximate null control- 
lability of system (l.l), (3.1) with respect to the output of (3.2). 

Let us consider further the system of observation, conjugate to (l.l), (3.1) 

$(t)=+(h) +~[A’(r)~(T)+A1/(T+h)Q(?f/l)l(I~i (3.3) 
t 

in which the aftereffect (the lead) reveals itself in the equations of the object of observa- 
tion (3.3) and of the measuring equipment 0.4). 

Note that m-dimensional output quantity 2 (t) 9 which can be measured, depends on the n- 
dimensional trajectory q(t) of system (3.3) and, also, on the k-dimensional undefined pertur- 

bation v(t), to< t< tl that generates it. 

The quantity ~4% (.) = {Ir, (L); Y (t), tl --h< t< tl} plays the part of the initial state of 

system (3.3) with lead, which for any II( R”, ye L,([t, -h, &],R”) entirely determines 

the essentially constrained trajectory q(t) on [to, &I for known perturbations u (.) E LI (It,, 
t11, R”). 

Definition 3.2. The quantity 

L+h 

$.(*) ={W*)--A,‘@* + il)9V* +h) i- s -41’W11;Wk 
*, 

t.+e 

S &'(t)ZC1(~)dr--s'(t. + e)$(C, + W, O<K~h) t. 

(3.5) 

is called the minimal state of (3.3) at the instant of time t, < t, - k . The basic property 

of (3.5) is that the information $t.'(.), as the prehistory of system (3.3) is minimal (neces- 

sary and sufficient) for an unambiguous determination of the trajectory q(t) on (-c-o,~ ) for 

known perturbations V(t), t<t,, when the condition that the matrices A (0, AI (0, A, (t) are 
supplemented on (-w, t,,) while preserving their properties. The following statement is more 

accurate. 

Statement 3.1. Let the matrices A (t), A,(t), A,(t) be supplemented on (-co,to) in such 
a way that condition d) holds in every finite interval. Then for any t, < tl -h the realiza- 
tion of the properties qt."(.) = 0 along any arbitrary trajectory of system (3.3) when v (t) ms 
0, t< t, is equivalent to $ (t)s 0 for almost all t< t,. 

Proof. When v (t) z 0, t < t,. the conjugate system (3.3) admits of the representation 

II, (t) = 9 (fd - A Cl, f h) ‘4 CL, + h) - 1 [A’ (7) ‘4 (T) i (3.6) 

1, 
-1,’ (T 1. h) $ (T + h)] dt + .11’ (1 + h) Ip (t + h), I <t. 

BY replacing variables we convert (3.6) to the form of the Volterra inhomogeneous equa- 

tion 

L 

11, (t) = - 1 .-I’ (T) Q (r) dr f q (1) 



445 

It follows from (3.7) that q(t)= 0 when gt,O (.)= 0, and q (t)=O successively in the 
intervals [t, - h, t.), [t* - 2h, f, - h) etc. Conversely, if J, W = 0, t < t, , then from (3.7) when TV 
[fA -22h.t. - h) it follows that the first component in (3.5) vanishes, and when t~[f,- h, 2,) 
the second component also vanishes for almost all O<O<h. 

If the matrix AZ(t) is absolutely continuous in Itor tIl, the integral system (3.3) reduces 
to the difference-differential form 

$' (t) = --A' (t)lp 0) - A,’ (t + h) rp (t + h) + didt [A,’ (t + 

h) 21 (t + WI + C' 0) u (t), t, Q f < tl - h 
$,' (t) = -A’ (t) 9 (t) - y (t) + C’ (t) IJ (t), tl - h < t < t, 

1, (td = $1 E Rn 

(3.8) 

with the conditions of-jumps (2.6). 
It can be shown that the minimum state (3.5) of system (3.8), (2.6) may be represented 

in the form 
($(t*- 0); Az'(rt,)P#(rt,- O)-$(*t.+ O)l;Ai(&+8)~(t*+8)- 

-&[&'(t,+8)W,+8)1, O<fI < h] 

where z, is the point of discontinuity of the form t1 - ih,i = 1,2, . . . . closest on the right 
to t. 

Let h C R" X L,([t, -h, t,],R”) be the Banach space of the initial state $1, (*) = {$ W; 

y (t), tl -h Q t Q tI} of system (3.3) and let Q C L,([tor t,],R”) be the perturbation space u(t), 
t, < 1 < t1. 

Definition 3.3. System (3.3), (3.4) is called the ideally h-observable at the instant 
of time t, with perturbations from space Q, if it follows from the condition z(t)=O,tO < t < tl 
that $IP (s) = 0 for any 9’1, (a) E A, u(e) E Q. 

Remarks. 3.3. If the definition of system (3.3) is extended to (-co,to) when " (t) % 0, 
t <,Gl, then by virtue of statement 3.1 the observability is equivalent to the possibility of 
reconstructing by the output r(t),tO<t<t, the trajectory *(I) of system (3.3) for almost all 

t < to for any qt,(.)=A, u(.)EQ. 
3.4. The proposed concept of ideal observability of systems with aftereffect was first 

introduced in /16/ in the case of a system with lag with respect to the state for a specific 
form of the space A, Q (when there are no perturbations, it reduces to observability on the 
continuation *). In the case of a set of ordinary differential equations, when D(c)=0 the 
concept introduced is equivalent to ideal observability in the sense of /17/ (see also /3/ 
and the bibliography given there). If q(c)== 0, the observability is close in spirit to the 
concept of conditional ideal observability which was introduced and used to solve game problems 
of dynamics in /3/. 

3.5. If +(tl)= 0 and the matrix .4,(t), t,<t< t, is continuous, the trajectory rp (1) of 
system (3.3) is continuous on [to, 811. If then the matrix A,(t) is absolutely continuous on 
[to, Gl, the respective observability of system (3.8), (2.6) is equivalent to the observability 
of system (3.8) without the condition of trajectory jumps (2.6), it is then possible to con- 
sider the quantity 

('+' ft.); A,' (fr + 8) rP (t. + 8) - didf [A,' (t, + O)$ (t. + O)], 0<8 < h) 

as the minimum state of system (3.8). It includes the necessary and sufficient information 
for determining the single-valued absolutely continuous trajectory of system (3.8) on (-qt.). 
Note that similar constructions for systems with aftereffect of the type (1.1) are'called in 
/18/ the informer of the solution at the instant t.. 

4. The principle of duality. Kalman's principle of duality /19/ (see also /l-3/, 
19,20 is well-known in the theory of control and observation of conventional linear systems. 
It established the dual correspondence between the concepts of controllability of the input 
and the observability of conjugate dynamic systems. 

Various duality relations between the controllability and observability of linear systems 
with lag were obtained in /13, 14, 16, 18, 21/. Note that in /lo, 16, 20/ the duality between 
the controllability and observability of linear systems is derived directly from the duality 
of correspondence in the theory of extremal convex problems, i.e. Kalman's duality principle 
is inserted into the general theory of duality of convex analysis. The problems of control 
are thus reduced to the respective problems of minimizing a functional of the norm type on 
trajectories of a linear control system with free right-hand end. Below. duality relations 
are established in this way between the concepts of controllability and observability of 
systems with aftereffect considered here. 

* Mordukhovich, B.SH. and Sasonkin, A.M., Duality in problems of the control of systems of 
neutral type with application to controllability and observability. II. Minsk, Deposited at 
VINITI No. 5267-80,198o. 
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Henceforth we will assume that P = L, ([to, tJ,@), i<pc =, and the n~m ll.ljil 1II the 

space of pairs (x1; p (t), tl -h $ t Q t,} is defined by one of the following formulas: 

1) II (II, B (.)) Ila = II IIllRU = 151 I 

2) 11 @IT P (.)) iIn = II B (+) [IL,; L, = L, (it* -h, tll, R”), 1 < r < x 

3) 11 (111 B (.)) Ila = ll.h, B (.) llRUXL, = (I II lr + II p (.) //qrp,, l,<r<u 

Then P* = L Q (It,,, ttl, R”), liq + lip = I, and the conjugate space Q* has the form 

1) Q* = (($1, y (.)) : $1 E R”; y (t) = 0, tl - h < t < il} 
2) Cl* = {(‘#I, Y (.)) : $1 = 0; y (.) E L, (It, - h, tll, R”), l/s + i/r = i} 

3) n* = {(‘hi y 4.)) : ‘$1 E R”; y (.) E L, ([tl - h, &I, R”), 1.:~ + l/r = 1) 

Note that in case 1) we may assume in the definition of observability that y (.) isa fixed 

function from L, ((tI - h, tIl, R”), and in case 2 consider that qIis a fixed vector from Rn(the 

condition of jumps (2.6) for system (3.8) is immaterial). 

Theorem 4.1. When the assumptions made above are satisfied, the following principle 

of duality holds. For the %approximate null-controllability of system (1.1), (3.1) on the 

segment [t,,t,] with P-approximations of constraints (3.2) it is necessary and sufficient that 

the conjugate system (3.3), (3.4) where Q* is ideally observable at the instant of time t, 

with perturbations from space P*. 

Proof. Consider case 3) (in other cases the proof by the same scheme is similar). Follow- 

ingtheprocedure in /16, 20/, we shall formulate the problem of minimizing the functional 

r(X,U)=IX(tl)l+ f ,X(t),%+-{ Ic(t)s(t)+D(t)u(t)IPdt-~inf (4.1) 
f,--h t. 

on admissible processes of system (l.l), (3.1). Obviously the controllab+lity is equivalent 

to infI(z,u) = 0 in problem (l.l), (3.1), (4.1) for any functions 'p (t) absolutely continuous 

in (3.1). By virtue of the extremal duality relation (2.7) we have 

min J ($, w) = -inf I (I, 2~) = 0, Vq (.) (4.21 

where minJ($, w) which is taken in problem (2.1)-_(2.4), which is dual to (1.1) , (3.1) and 

(4.1), and which for p = 1, r = 1, w = (v,y) can be represented in the formof the problem of 

minimizing the functional 
f.ih 

J($, 0, Y) = 1 @'(t)[A(t) cp (t - h) + AZ(~) cpp' (t - h)]dt + (4.3: 
t0 

'P (QIlr,(&) - AZ'@ + h) J,(& + h)l- inf 

on trajectories of system (3.3) with the constraints 

f?’ (t) ‘# (t) + RI’ (t + h) $ (t + h) - D’ (t) v (t) I 0, t, _< t < t, 

I Q (h) I -< 1; I Y (Q I -< 1, t, - h < t < h; I v (4 I < I, to G t < t, 

When p>l, r>l, the functional (4.3) is supplemented by the term 

(4.4) 

(4.5) 

$~,u(r),qdr+f 1 Iy(t)/.dt(++-+l, f ;$=i) 
1. 11-h 

and the respective constraints in (4.5) are replaced by 

u (.) E L, (k,, hl, Rk), y (.) E L, (It, - h, tll, R”) (4.6) 

which does not alter the essence of subsequent reasoning. Transforming the functional (4.3), 

taking into account the absolute continuity II,(t), t, --h <t< t,, and the formula of integration 

by parts, we obtain 
f*th 

.'(~,u,Y)= s (m:(t--))'[-%'(w(t)-- A,'(rP#(+++ 
1. 2. 

!.+h 

cp'(t,)jtl,(l,)--~,'(to+h)rl,(lo+h)+ 1 4'(W(W] 
1. 

Hence by virtue of (4.2) we obtain the relations 
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trth 

(I, (to) - 4’ (to + h) 9 (to + h) f s Al’ (t) 11 (t) & = 0 
t. 

for any processes {q(s), u(.),v(.)} admissible in (3.3), (4.41, and (4.6). The latter also 
means the observability of system (3.3), (3.4) corresponding to case 3). The theorem is 
proved. 

Remarks 4.1. Within the scope of the approach considered here to problems of control- 
lability and observability we can investigate the case when the initial function m(t) in (3.1) 
is discontinuous when t = t,. Then in Theorem 4.1 the minimal state (3.5) must be replaced 
in the definition of observability by the quantity 

L+h 

(9 Ct.1 - 4’ (t. + 4 Q (t. + 4; \ 4’ 6) rP W dr; 

1. 
t.+e 

S 4' (3 6 (T) dr .-- 4'k+ 0) 'I(:, + 0). O<'J< h} :. 
which contains redundant information for calculating the trajectory of system (3.5) in (-ca,~.). 

4.2. The problem of exact controllability of system. (l.l), (3.1) in a given space when 
the constraints (3.2) are satisfied, reduces in this approach to obtaining the theorems of 
existence of the optimal controls in the respective optimization problem of the type (l.l), 
(3.1), (4.1). The class of functions that have a solution is the natural class of (exact) 
controllability. It also generates linear operations of restitution in the dual problem of 
observation. The results of /8, 22/ enable general situations to be distinguished, where such 
problems are solved by passing to generalized pulsed effects /l, 3, 6/. 
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